Normalized embedding of trees

The path P_n is the tree with $V(P_n) = \{x_i : 0 \le i \le n-1\}$ and $E(P_n) = \{x_i x_{i+1} : 0 \le i \le n-2\}.$

We embed the path P_n as a subgraph of the 2-dimensional grid. Given such an embedding, we consider the ordered set of subpaths L_1, L_2, \ldots, L_k which are maximal straight segments in the embedding, where the end of L_i is the beginning of L_{i+1} for any $i = 1, 2, \ldots, k - 1$.

Suppose that $L_i \cong P_2$ for some $i, 1 < i < k, V(L_i) = \{u_0, v_0\}$, thus $u_0 \in V(L_{i-1}) \cap V(L_i)$ and $v_0 \in V(L_i) \cap V(L_{i+1})$. Let $u \in V(L_{i-1}) - \{u_o\}$ and $v \in V(L_{i+1}) - \{v_o\}$ such that their distance on the grid is 1. The replacement of the edge u_0v_0 by the new edge uv is called an *elementary transformation* of the path P_n .

We say that a tree T of order n is a *path-like tree* when it can be obtained after a sequence of elementary transformations on an embedding of P_n in the 2-dimensional grid.

The concept of path-like tree was introduced by C. Barrientos in 2004.

Let \mathbb{L} be the 2-dimensional grid. If we fix a crossing point as (0,0), then each crossing point in \mathbb{L} is perfectly determined by an ordered pair (i, j) where *i* denotes the row (level) and *j* denotes the column of \mathbb{L} .

Let **I** be an embedding of the path P in \mathbb{L} such that:

1. one end vertex of the path P is (0,0),

2. each row of the embedding contains at least two vertices of the path P, and each vertical subpath in the embedding is isomorphic to P_2 ,

3. assume that *i* is an even integer and that $(i, j), (i, j+1), (i, j+2), \ldots, (i, j+t)$ is a maximal straight horizontal subpath (isomorphic to P_{t+1}) in the embedding of the path *P* in \mathbb{L} . If (i+1,m) belongs to the embedding of the path *P* in \mathbb{L} , then $m \leq j + t$,

4. assume that *i* is an odd integer and that $(i, j), (i, j-1), (i, j-2), \ldots, (i, j-s)$ is a maximal straight horizontal subpath (isomorphic to P_{s+1}) in the embedding of the path *P* in \mathbb{L} . If (i+1,m) belongs to the embedding of the path *P* in \mathbb{L} , then $m \geq j-s$.

Then the embedding $\mathbf I$ is called a *normalized embedding* of the path P in the grid $\mathbb L.$

We study properties of path-like trees which can be obtained from a set of elementary transformations on a normalized embedding of the path in the 2dimensional grid. We also provide necessary conditions that allow us to exclude trees with maximum degree at most 4 from being path-like trees. Furthermore, we established a relation among the number of normalized embeddings of the path P_n in the 2-dimensional grid, and the Fibonacci numbers.

• Bača, M.- Lin, Y.- Muntaner-Batle, F.A.: Normalized embedding of path-like trees, Utilitas Math. 78 (2009), 11-31.